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A B S T R A C T

Technological change plays a critical role in industrial- and societal development. As a consequence, modelling,
measuring and monitoring the rate and direction of technological change has been extensively studied. However,
there is to-date no scalable, cross-domain, and data source agnostic quantitative indicator for technological
change that considers a combinatorial process of invention and technology development. This paper develops
and empirically tests a network-based method that takes a combinatorial view of technological development as
underlying rationale and provides a quantitative indicator for technological change. Unlike prior research, the
proposed method allows for the simultaneous inclusion of multiple and diverse types of data sources, i.e.
publications, patents, and projects and it uses text-mining analyses based on co-occurrences of terms over time.
The novel method proposed here goes beyond reliance on domain experts building custom sets of taxonomies, is
applicable across different technological domains, and permits a temporal analysis of changes across years,
industries, and countries. This is illustrated using a large database of worldwide bioenergy research and de-
velopment (R&D) records. Findings include the detection of biofuel generations in the data before they were first
mentioned as such in literature. Implications for research, industry and policy are also discussed.

1. Introduction

Quantifying the rate of technological change in a given industry or
field is a prerequisite for identifying the speed and strength of tech-
nological transformations. It is also a prerequisite for supporting the
management of interventions that seek to modify technological trajec-
tories and seek to speed-up or control the degree of technological
change (Guan and Liu, 2016; Phillips and Linstone, 2016). A good in-
dicator for technological change helps to answer questions such as: Are
we in a period of incremental or radical change? What patterns of
technological change exist that can help forecast the future rate and
degree of technological change? Despite the usefulness of indicators for
technological change, there is to-date no scalable, cross-domain, and
data source agnostic quantitative indicator for technological change
that incorporates what is considered a crucial element of how tech-
nology changes: the combinatorial process of invention and technology
development (Arthur, 2009; Youn et al., 2015).

Technologies are characterized as a combination of components or
subsystems that are assembled to perform one or more functions, ex-
ploiting the structure and behavior of the parts that compose it (e.g.
Arthur (2009)). In this view, an important element of technological
change is the way in which technologies are configured and

components or subsystems that are chosen to produce the desired
function are varied (Youn et al., 2015). This has typically been asso-
ciated with a combinatorial view of technological evolution. However,
the underlying dynamics of technological recombination remain in-
sufficiently explored, and a thorough understanding of underlying
technological change mechanisms needs to be further developed and
improved (Fleming and Sorenson, 2001).

A number of recent research studies imply this is a timely issue, for
which there is no easy answer (Nosella et al., 2008). For example,
monitoring and prediction of technological changes connected to
changes in frequency and direction are often oversimplified, not taking
into consideration various influences between existing incremental and
radical technological changes (Hekkert et al., 2007). Technological
change is commonly understood in terms of incremental and radical
shifts, and technological diffusion is analyzed with approaches such as
technological trajectories and paradigms (Dolfsma and
Leydesdorff, 2009). In a more practical sense, technological change is
often manifested in new products, processes, or materials
(Jorgenson, 2001; Strumsky et al., 2012) and, as such, tangible traces of
products, processes, or materials, e.g. in the form of patents or pub-
lications and the like can be used to identify, measure and monitor
technological changes (Youn et al., 2015).
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Tangible traces that hold information about technologies include
patents (Benson and Magee, 2013), project repositories (Moro et al.,
2018), and publications (Järvenpää et al., 2011). Such data sources are
seen as well-defined objects and proxies that can provide insights into
technologies within different application domains (Solé et al., 2016). As
such, they codify information about technological changes and enable
systematic and quantitative analyses. However, various issues may
emerge due to inadequate descriptions of technologies and the com-
plexity of mutual influences. To address this, significant effort ought to
be placed on the implementation of a combinatorial perspective and the
development of approaches that use combinatorial principles.

Although previous research has adopted a number of approaches to
analyze and describe technological change, to this date, there is no
convergence to a single commonly accepted standard approach, method
or indicator. Depending on the required depth and breadth of the stu-
died phenomenon, both qualitative and quantitative approaches have
been used to explore technological changes and development
(Popper, 2008). The predominant approach nowadays is based on
quantitative analyses of information embedded in different digital da-
tabases (Funk and Owen-Smith, 2017). These quantitative analyses
have been considered as a more systematic and objective manner for
analyzing technological changes in comparison to qualitative ap-
proaches (Lee et al., 2011). By using objective information about ana-
lyzed technologies, these analyses allow a methodologically more
consistent, structured and repeatable approach to study technological
changes (Suominen, 2013).

The most frequent methods applied to quantify technological change
can be divided into three groups: 1. Those related to changes in the
characteristics (e.g. cost/performance/impact) of technology-related enti-
ties (e.g. Moore (1998)); 2. Those related to the volume of technology-
related entities (such as terms, categories, term-pairs) within a collection
of digital records (e.g. Dernis et al. (2015)); and 3. Those related to
structural changes of networks composed by technology-related entities
within a collection of digital records (e.g. Alshamsi et al. (2018)). These
three groups are aligned with the categories of impact, activity and col-
laboration described by Moed et al. (1995) for tracking technological- and
research performance.

Recently, scholars began to favor a view that acknowledges com-
plexity using the third group of methods. These methods allow for a
better understanding of the role and position of a particular technology
within a given domain and enable analysis of mutual relations with
other competing or supplementary technologies. Building on these
premises, the main contribution of the work reported in this paper is
twofold. First, by taking into consideration a wider set of data sources
(publications, patents, project repositories) and introducing an im-
proved network-based methodology to quantify a combinatorial view of
technology, this paper allows for a more objective and integrative
measurement of technological change. Second, by applying a novel
measure that synthesizes technological change and evolution, which
acknowledges the network structure of a certain technological domain,
this paper provides new insights into the structure and dynamics of a
technological domain and its combinatorial space.

The remainder of the paper is organized as follows. Section 2 re-
views literature on the combinatorial view of technological change and
on network-based approaches that have been used to measure techno-
logical change to-date. This is followed by a detailed description of the
proposed methodology in Section 3, which encompasses the definition
of document corpora, the creation of a dictionary of terms and the
proposal of a novel indicator of technological change. The im-
plementation of the methodology within bioenergy R&D as an appli-
cation domain is demonstrated in Section 4. Section 5 includes a re-
flection on the findings from the example case of bioenergy, a
discussion about the methodological components of the conducted re-
search study and a comparison with existing approaches for measuring
technological change. Finally, main findings are summarized and di-
rections for future research are provided.

2. Technological change as a combinatorial process

2.1. The combinatorial view on technological change

As a driving force for technological progress, technological change
has been widely understood as a process of combination and re-
combination (Fleming and Sorenson, 2001; Schumpeter, 1934), where
different new and already existing technologies are integrated resulting
in a technological novelty (Strumsky et al., 2012). As such, technolo-
gical change is typically manifested through the introduction of new
technological functionalities into a set of existing technologies
(Youn et al., 2015).

Technological change emanates from recombining and synthesizing
components in a novel manner (Carnabuci and Bruggeman, 2009;
Fleming and Sorenson, 2001) or for a new application (Henderson and
Clark, 1990; Yayavaram and Ahuja, 2008). Such combinations are
considered as principal sources of technology development and pro-
gress that dominate innovation activities (Youn et al., 2015). Therefore,
within the combinatorial view of technological change, new and ex-
isting technologies are considered as building blocks for other new
technologies (Arthur and Polak, 2006; Fleming and Sorenson, 2001;
van den Oord and van Witteloostuijn, 2018). Combinatorial processes
have traditionally been described based on two criteria: 1) the famil-
iarity of technological components being used and 2) the novelty of
combinations being developed (Arts and Veugelers, 2015).

Literature on the combinatorial view of the technological progress is
often based on individual case-based research (Lee et al., 2011;
Nosella et al., 2008), lacking a standardized quantitative characteriza-
tion and appropriate description of the underlying technological
building blocks (Youn et al., 2015). The quantification of these building
blocks (different technological elements) provides a more systematic
approach to measuring technological changes, potentially allowing for
the identification and monitoring of technology patterns and associated
influencing factors (Venugopalan and Rai, 2015). Several studies have
measured and employed a combinatorial search process based on in-
sights obtained from patent and publications. Using patent data,
Fleming and Waguespack (2007) explored how social interaction
structures, like brokerage and cohesion, influence the creation and
usage of novel combinations. With a different focus on variables in-
cluding individual expertise and motivation, studies such as Arts and
Veugelers (2018) and Arts and Fleming (2019) examined how such
variables affect the novelty and value of inventive outputs. Although
different in focus to the work reported here, these studies employ
quantification strategies that can pave the way for various combina-
torial process applications.

Quantitatively to describe the combinatorial process, it is necessary
to establish a firm and consistent base that allows analysis of the un-
derlying dynamics of technological changes. For that reason, technol-
ogies need to be discretized in order to map, analyze and depict a
technological domain. In that way, combination traits such as the fre-
quency and quantity of technology or component combinations may be
used to recognize and demonstrate technological changes. Although
Strumsky et al. (2012) expressed their empirical concerns throughout
the process of discretizing and identifying technologies, there have been
several attempts to develop various technological classifications that
have been used for the examination of technological evolution. These
classifications can be used for describing technological progress
throughout a certain period and potentially forecast future trends or
streams within a given application domain (Youn et al., 2015).

One of the most common classification approaches used to dis-
cretize technologies are technology codes of patents, such as
International Patent Classification (IPC), the U.S. Patent Classification,
or European codes (EPC), which are a way to describe a technological
space. However, scholars (e.g. Venugopalan and Rai (2015)) have re-
ported the limitations of using patent codes in connection with classi-
fications being assigned by different patent examiners potentially
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leading to inappropriate and inaccurate code assignment. In addition,
patent codes do not offer enough insights about specific technological
features relevant for analysis on a more detailed level. For that reason,
some scholars such as Moro et al. (2018) include bibliometric analyses
on project repositories and publication databases to identify and clas-
sify technologies and to tailor such analyses to the specific needs of
their studies. In general, these various classification strategies result in
different levels of granularity, relevance and validity of predefined
categories. As a result, applicability and performance of predefined
categories are often limited. Moreover, it has been reported that fixed
categories or attributes that are specific to a given document type
hinder the combination of different data sources (Kostoff et al., 2001)
and lead to biased results (Järvenpää et al., 2011; Suominen and
Seppänen, 2014). For this reason, recent studies such as
Arts et al. (2018) or Arts and Veugelers (2018) adopt natural language
processing techniques and text mining techniques to discretize patent
technologies and as such provide first steps towards the quantification
of technological changes. What is missing, however, is a quantification
of technological changes that considers multiple data sources using a
combinatorial view, for example, network-based approaches. Network-
based approaches are varied and determine the type and characteristics
of indicators of technological change that can be derived.

2.2. Overview of network-based approaches for measuring technological
changes

The focus of this paper is on methods that capture structural
changes of networks; networks that are composed of technology-related
entities that characterize and contextualize technologies. In the case of
bioenergy R&D (see Section 4 of this paper), technology-related entities
would, for example, include “pyrolysis”, “catalysis”, “algae”, “micro-
wave”, “briquette”, “biomass” within a collection of records. While, for
example, algae refers to an organism, algae plus microwave refers to a
technological process by which microwaves are used to process algae.
Such combinations can be captured through network-based approaches.
To distinguish discrete technologies, prior research has studied struc-
tural changes using various strategies such as co-occurrence of cate-
gories (Yoon and Park, 2004), references/citations (Chang et al., 2009)
and keywords (Dernis et al., 2015). Such network-based approaches
allow for a more encompassing and comprehensive overview of a target
technological field (Choi and Hwang, 2014) and provide insights into
relationships between categories or technologies analyzed (Yoon and
Park, 2004). As such, network-based approaches allow for a better
understanding of technological changes in an industry or technology
domain (Lee et al., 2015).

Network-based approaches vary in their discretization strategies
and can be divided into three groups: 1) those using predefined cate-
gories, 2) those using explicit links (references) between digital docu-
ments, and 3) those using keywords (terms) extracted from the docu-
ments.

Within the first group, we find those works that leverage both ex-
plicitly encoded categories or classes of digital records and relations
between those records. Examples include technology codes in patents
(e.g. Lee et al. (2015)), product classifications in countries import/ex-
port databases (e.g. Hausmann and Hidalgo (2011) and
Tacchella et al. (2012)), and bibliometric studies using scientific clas-
sifications (Liu et al., 2014). These studies have allowed mapping
changes in the network structure of predefined classifications within a
data source of interest, relying on the granularity and comprehensive-
ness of the classification scheme used in the selected data source. Un-
fortunately, as the classification schemes are not shared across multiple
data sources, these approaches are harder to scale and replicate to cover
additional document sources that do not follow the same classification
system.

The second group includes approaches where the primary focus is
the analysis of network changes using explicit links between digital

documents. These links are often interpreted as reference/citation in-
formation of digital documents. Networks built this way mostly con-
sider digital documents as network nodes and links as citations or re-
ferences of a given digital document. These citations imply the
existence of knowledge diffusion between digital documents
(Duguet and MacGarvie, 2005; Park and Magee, 2017), and can serve to
monitor and visualize technological knowledge evolution on individual,
firm, industry and national level (Kim and Magee, 2017;
Sternitzke et al., 2008). Through citation-based network studies, in-
sights have been obtained about patent and technology relationships
within specific technology fields and their impact (Kim and
Magee, 2017). For this reason, several attempts have been made to
analyze technological development using citation networks. For ex-
ample, Kajikawa et al. (2008) and Kajikawa and Takeda (2008) on
several occasions have used journal citation networks to detect emer-
ging technologies and to analyze structural network changes within
sustainability technology domains such as of biofuel, solar cells etc.
Utilizing patent citation networks Choe et al. (2013) explored techno-
logical knowledge flows between countries, institutions, and technol-
ogies within the domain of organic photovoltaic cells. Also,
Érdi et al. (2013) conducted a study of a patent citation network to
identify new technology recombination and measured temporal
changes of the structure of the patent clusters. By analyzing pairwise
combinations of references in scientific articles and counting frequency
of co-citation pairs, Uzzi et al. (2013) explored the impact of conven-
tional and unconventional combinations of prior work. Although these
types of studies have provided a valuable contribution to the under-
standing of different technology domains, inherent limitations of cita-
tion-based approaches still remain (Yoon and Park, 2004). For example,
these citation-based measures are often restricted to the analysis of the
technology's later use without considering different combinations and
configurations in which it may be included, thereby limiting a number
of technological change aspects that can be monitored.

The third group of approaches is comprised of those that analyze the
structural changes of networks using technology-related keywords or
terms. These approaches provide several advantages, going beyond
approaches based on fixed classifications or citation-networks. The
most important advantage is that they allow for a more inclusive and
granular analysis using actual terms used within the documents (key-
words) instead of a predefined set of fixed categories or citations
(Yoon and Park, 2004). An additional advantage of the term-based
methods is that since they do not rely on fixed categories, they enable
analysis of a combination of heterogeneous data sources without a prior
common categorization system or formal citation structure. These terms
are then commonly explored by various techniques such as co-word and
co-occurrence analyses (Joung and Kim, 2017). Such analyses are in
turn often coupled with other complementary approaches that either
improve their input (Yoon et al., 2011) or output (Chang et al., 2010).
The generated matrix of keywords or terms can be represented as a
network graph and as such, various network metrics such as density and
centrality together with procedures like clustering can be utilized to
analyze a given technology domain. Many different applications of
keyword-based approaches can be found in the technology monitoring
and measurement literature. For example, Engelsman and van
Raan (1994) used co-word and co-classification maps to represent re-
lations between and within different technological fields.
Chang et al. (2010) emphasized the role of visual representation of
patent keyword-based network analysis to explore the research field of
carbon nanotube field emission display. In order to improve co-word
analysis, Yoon et al. (2011) coupled it with the property-function based
approach and social network analysis. Recently, several examples can
be found where scholars suggest using SAO-based (subject-action-ob-
ject) and TF-IDF (term frequency-inverse document frequency) ap-
proaches mostly focused on the improvement of the identification of
emerging technologies, e.g. Joung and Kim (2017).

Despite the promise that the previously introduced third group of
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approaches represents, to this date there is no method specifically de-
signed to calculate an indicator of technological change that captures in
one measure overall technological change over time based on a com-
binatorial view of technology. In what follows, we offer and test such a
method.

3. Methods and data

Consistent with a combinatorial view on technological change
(Youn et al., 2015), the proposed method in this paper uses the oc-
currence and co-occurrence of terms within a corpus of documents
(Feldman and Sanger, 2007) to describe different combinatorial con-
figurations within a document corpus of R&D-related records. In our
approach, terms are text strings of one or more words, also called n-
grams (Dale et al., 2000) that represent technology-relevant entities.
Within the domain bioenergy chosen here, such technology-relevant
entities are production inputs (e.g. barley straw), processing technolo-
gies (e.g. pyrolysis) and outputs (e.g. biogas). More specifically, we use
changes over time in the occurrences and co-occurrences of such terms
as a proxy for technological changes. In this approach, the occurrences
and co-occurrences of selected terms within documents are used to
build adjacency matrices that store the weighted combinations of those
terms and term-pairs for each time period. Such matrices serve 1) as a
description of the combinations of terms that have been explored in a
given period of time and 2) to calculate configurational changes in the
matrix from one period to the next. An overview of the key steps in the
process is provided in Fig. 1 below.

3.1. Data sources and creation of the document corpus

The document corpus is built of documents extracted from sources

that record the results of research and development (R&D) activities
over time. Example sources for these document records include patents,
scientific publications, industry databases of R&D pilots and facilities,
as well as descriptions of research and innovation projects (e.g. R&D
projects funded by the European Commission). In the analyses here,
such a range of document sources is integrated with the purpose of
including a more diverse set of sources which allows for a more in-
clusive representation of the state of the art in a given technological
area (Guthrie et al., 2013; National Research Council, 2014;
O'Keeffe and McCarthy, 2012) and helps to embrace different knowl-
edge types related to these documents records. In fact, the proposed
method is not limited to a predefined set of sources, as it can include as
a document source any date-stamped collection of text-based records
that is considered relevant for a given technological field or application
domain. This combination of different and complementary types of
records provides an integrated representation of technological changes
within a given domain.

The minimum criteria for inclusion of a document source is the
existence of an abstract, date stamps containing at least the publication
year, and means to ensure the relevance of the documents included in
the data source (e.g. peer-review in the case of scientific articles and
application processes for patents and research projects). Additional data
about each document record can be used to filter or interpret results,
including information on geographical location, organizational affilia-
tion or authorship.

Depending on the application domain or technological area of in-
terest, filters are used to narrow down the records extracted from each
source. The objective of filtering is to facilitate the analysis and inter-
pretation of results (Wachsmuth, 2015), restricting the combinatorial
space of possibilities to the technological areas most relevant to un-
derstand the technology domain of interest. Technological areas of in-
terest can be defined at a very broad level, e.g. “Energy” or narrowed
down to increasingly specific areas of interest e.g. “Renewable Energy”,
“Solar energy”, or “Solar Photovoltaic Energy”. To operationalize the
filter, a set of keywords is defined to extract a broad set of document
records from each source connected to the technological area of in-
terest. The search strings used for filtering are selected following a
strategy that seeks high recall and precision, while recognizing the in-
herent trade-off between these attributes (Buckland and Gey, 1994).
The selected strategy is to divide the search process into two steps, a
first step that seeks to maximize recall (maximum coverage) and a
second step focused on maximizing precision (removing false positives)
(Buckland and Gey, 1994; Wachsmuth, 2015).

3.2. Creation of the dictionary of terms

There are multiple alternatives to generate a dictionary of terms to
build the term co-occurrence matrices (Alghamdi and Alfalqi, 2015;
Cook and Jensen, 2019; Feldman and Sanger, 2007; Noh et al., 2015).
These alternatives can be divided into three broad groups: 1) Methods
that generate a reference dictionary by tapping directly into knowledge
from domain experts. These methods create an ad-hoc set of terms for
the required analyses. In that way, a rich and highly contextualized
dictionary is created. Yet, one that is hard to scale and hard to update.
2) Methods that extract terms directly from the corpus, employing in-
formation retrieval techniques, such as term frequency–inverse docu-
ment frequency (TF-IDF) that identifies keywords and ranks them based
on their relative frequency. These methods are highly scalable and easy
to update, but they are unable to capture attributes specific to the
technological domain and classify the terms accordingly. 3) Hybrid
methods, like the ones applied in this paper, that mine pre-existent
expert knowledge from large open datasets, including structured dic-
tionaries, ontologies and taxonomies to extract terms associated with
the inputs, processing technologies and outputs. A key characteristic of
these methods is that they do not build the dictionary using the main
document corpus that will be analyzed to quantify technological

Fig. 1. Overview of the key steps in the proposed method to quantify techno-
logical change.
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change. Instead, they use a separate set of data sources specifically
chosen for the purpose of building a reference dictionary. Such methods
combine the advantages of gathering a temporal structured knowledge
from domain experts with the scalability of computational text mining
approaches. In these hybrid methods, the key criteria to determine the
inclusion or exclusion of a given term is their existence in the curated
set of data sources. In this way, the list of terms is the result of the
aggregated expert knowledge distributed in authoritative repositories
as opposed to being based on a discretionary decision.

Generating a list of terms for a dictionary is sometimes referred to as
named-entity extraction and recognition (Nadeau, 2007). Entities can
be extracted for example from, Wikidata, DBpedia, open classifications
such as the European “Reference and Management of Nomenclatures”
system, and from patent claims and patent categories. This method
provides access to structured lists of terms covering, among other
things, all known chemical elements, molecules, organisms, products
and commodities. Such extensive sources of organized entities allow for
comprehensive coverage of the potential combinatorial space and have
the advantage of being a list that is constantly updated by a community
of supporters to reflect new discoveries and inventions allowing to
maintain the dictionary up-to-date. The extraction of terms to build the
dictionary from these sources can be challenging because many terms
have multiple synonyms and variations. To deal with these challenges,
term normalization techniques are applied to merge conceptually
equivalent term duplicates (e.g. Cho et al. (2017)) and a final step of
manual verification of the results by the researchers provides a quali-
tative validation of the dictionary.

3.3. Creation of term co-occurrence adjacency matrices

To build the adjacency matrices that store the co-occurrences of
terms on each time period, first, the occurrences of each of the terms in
each of the documents in the corpus per time period need to be col-
lected. The occurrences of terms within documents can be stored in
what is known as a bi-adjacency matrix. Here, this matrix is a re-
presentation of a bipartite network, where the first type of nodes are the
terms in the created dictionary and the second type of nodes are each of
the documents within the corpus. In this bipartite network, an edge
exists between a given term and a given document if the term is found
at least once within the document. In matrix representation, this takes
the form of an unweighted rectangular Matrix A of size d x t, where the
rows in the matrix list all documents (d) and the columns lists all terms
(t). Within this Matrix A each cell represents the existence or absence of
a match term-document.

=
a a

a a
A

t

d dt

11 1

1 (1)

In Matrix A, the sum of the values in a column provides the number
of matches for that term in the document corpus. The column projection
of Matrix A is calculated as ATA (Everett and Borgatti, 2013) and allows
to transform the original matrix from a two-mode network re-
presentation “document-term” to a one-mode network representation
that is contained on a weighted and undirected (symmetric) adjacency
term-term matrix. In this new weighted Matrix B, each cell counts the
number of documents in which a given pair of terms co-occur. This
procedure is run for the documents that occur in each year and as a
result creating one weighted adjacency matrix per period (By).

To account for the different amount of document records that exist per
year, the matrix (By) is normalized by the total number of the document
records per year. The normalization approach divides each entry in the
matrix (By) by the total number of documents in the year “y”.

3.4. Calculation of year-to-year changes in the normalized matrix of term
co-occurrences

In order to measure year-to-year changes in the normalized term co-
occurrence matrix, an algorithm is needed that summarizes the re-
lationship between pairs of matrices representing different years. More
generically, this is equivalent to quantifying the relation between two
pairs of high-dimensional datasets in matrix form. Among a diverse set
of matrix correlation algorithms (for a review see (Ramsay et al.,
1984)), the R Vector (RV) coefficient (Robert and Escoufier, 1976) is
often considered as the most appropriate metric to quantify the simi-
larity between squared symmetric matrices (Abdi, 2007; Josse et al.,
2008; Smilde et al., 2009).

Mathematically, the RV coefficient is a measure that takes values
between 0 and 1, where 0 indicates no similarity between two matrices
and 1 indicates that the matrices are structurally equivalent. For Matrix
Bi (B in time i) and Matrix Bj (B in time j), their RV coefficient is:

=RV trace
trace trace

B B B B B B
B B B B

( , ) ( )
( [( ) ] [( ) ])

i j
i i J J

i i J J
2 2 (2)

In the context of a combinatorial perspective on technological change,
the RV coefficient measures the extent of the configurational change
from one year to the next, in the form of a similarity measure which fits
the requirement of examining not only the evolution of individual terms
or categories but also the way in which they are combined.

An overview of the three groups of matrices used in the method for
quantifying technological change proposed here is provided in Fig. 2.

Fig. 2. Overview of the three groups of matrices used in the proposed method for quantifying technological change.
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4. Results: technological change in bioenergy R&D worldwide

To demonstrate the method for quantifying technological change
proposed here, we applied it to measure technological changes in the
context of research and development (R&D) in the field of bioenergy
solutions. Research and development of bioenergy solutions is an active
technological field, with R&D-related records starting from the mid-
seventies (Clarivate, 2018a; Gupta et al., 2014), and a field that has in
the past two decades experienced a significant increase in the volume of
R&D document records (see Fig. 3, logarithmic scale).

Bioenergy R&D is concerned with the generation of renewable en-
ergy using materials derived from biological sources such as biomass
(Gupta et al., 2014). One of the main areas within this technological
space is the production of biofuels (Pandey et al., 2011). During the
lifetime of this field, there have been several technological changes
related to aspects such as the production inputs used (the feedstocks)
and the processing technologies utilized (Ferreira et al., 2013). The
main drivers for these changes are connected to the social, environ-
mental and economic sustainability of biofuels. These drivers have
translated into pressures to increase the speed and volume of the pro-
duction of greener and cheaper biofuels that can become viable alter-
natives to fossil fuels (Pandey et al., 2011). Retrospectively, such
changes have been characterized in terms of what is now known as four
biofuel generations (Aro, 2016).

Although not all researchers agree on the descriptions of these four
generations, and these descriptions have changed over time, in general
terms, first-generation biofuels, also known as conventional biofuels,
are characterized by being produced using food crops and processes
such as fermentation. Second-generation biofuels are produced using
non-food crops as well as agricultural waste and are often processed
using thermochemical and biochemical approaches. Searching scientific
publications (Scopus) and the indexed corpus of Google Books, the first
formal reference to “second generation biofuel” appears in the year
2006, introduced to describe the notion of a generational distinction in
the technological landscape of bioenergy R&D. Third-generation bio-
fuels are mostly algae-based and are often processed using oil-extrac-
tion methods (the first formal reference to them is in 2008). Finally,
fourth-generation biofuels represent a wide-range of approaches cur-
rently in development and the first formal reference to them appears in
2010. This fourth generation of biofuels, in conjunction with

sustainability benefits associated with second- and third-generation
biofuels, is characterized by technological advancements such as the
integration of CO2 capture and storage processes, the use of synthetic
biology (e.g. designer photosynthetic microorganisms) and the use of
cyanobacteria. Fourth-generation biofuels seek to go beyond being
carbon neutral to effectively providing net carbon-negative solutions.

As the above description suggests, from a combinatorial perspective
the technological landscape of bioenergy R&D is a rich space of study,
where a large number of combinatorial possibilities have been explored
connecting multiple sets of inputs, processing technologies and outputs
over time. This, in addition to the societal relevance of bioenergy R&D,
has made this field a good test ground for the method of quantifying
technological change proposed here.

An important challenge within this technological field relates to the
difficulty of mapping the rate of technological changes (Chuck, 2016;
Curci and Mongeau Ospina, 2016). Given the combinatorial nature of
technology (Youn et al., 2015), technological change needs to consider
not only individual trends based on the volume of documents with
specific terms or categories but also the relative changes in the explored
combinations of key inputs, processing technologies, and outputs.

4.1. Data sources and creation of the document corpus

Following the method proposed here, to achieve a broad coverage of
relevant research and development document sources, we have text-
mined a diverse set of historical records of technology-related R&D
activity. These records include patents, scientific publications, official
EU project descriptions (the CORDIS database), as well as databases
that include Bioenergy2020+, ETIP Bioenergy, Biofuel Digest and
Genscape which contain descriptions about biofuel-specific projects and
worldwide biofuel facilities.

To focus on those results that are most clearly associated to bioe-
nergy or biofuels, we have used the following text string as filter for all
the data-sources: [“biofuel* OR bio-fuel* OR "bio fuel*" OR bioenerg*
OR "bio energ*" OR bio-energ*”]. This text string was selected based on
the amount and quality of the results it provided, which after manual
examination showed a good balance between recall and precision. After
applying the filter, the number of documents that are per data source
included in the analyses is:

• Scientific publications (Clarivate, 2018a): 58.239 documents
• Patents (Clarivate, 2018b): 6.570 documents
• Official EU project descriptions (European Commission, 2018): 692
documents

• Biofuel facilities and projects (Biofuel Digest, 2018;
COMET Centre, 2018; European Technology and Innovation
Platform Bioenergy, 2018; Genscape, 2018): 1.647 documents

Although the majority of the records come from scientific publica-
tions, the additional coverage in terms of patents, projects, and biofuel
facilities, allows the capture of terms and term-pairs that are widely
used outside academic circles and to a lesser extent represented in
scientific publications. In addition, since the year-to-year analyses are
not affected by absolute volume but rather by the overall configuration
of the term matrix, yearly variations in volume between document
sources are less problematic.

4.2. Creation of the dictionary of terms

To build a dictionary of relevant terms, we followed the hybrid
method described in Section 3.2, mining comprehensive open taxo-
nomies in English that have been developed in the bioenergy field with
the explicit objective of cataloguing all known feedstocks, processing
technologies and biofuel outputs. The taxonomies we mined are Re-
egle's “Renewable Energy Glossary” (REEEP, 2018), “NREL - The Bio-
fuels Atlas” (NREL, 2018), the “Advanced Biofuels & Biobased materials

Fig. 3. Volume of R&D documents within the bioenergy field collected for this
research (logarithmic scale).
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Project Database” (Biofuel Digest, 2018), and the “Bioenergy Feedstock
Library Idaho National Laboratory” (Idaho National Laboratory, 2018).
Once terms using name entity extraction were elicited (Nadeau, 2007)
and duplicates removed, a list of 208 entities was obtained (mostly
made of one or two terms each). For example, entities classified as in-
puts (feedstocks) include strings such as “corn”, “algae” and “bagasse”.
Entities within processing technologies include strings such as “trans-
esterification”, “pyrolysis” and “enzymatic hydrolysis”. Entities classi-
fied as outputs include strings such as “biobutanol”, “biodiesel” and
“methanol”. Although new terms might be introduced over time, the
analysis can be replicated and kept up to date by adding terms when a
new one is listed in one of the mined sources. This is possible as in-
creasing the size of the co-occurrence matrix to include new terms does
not affect the analysis for the previous years when the term has not yet
appeared in that year's corpus.

4.3. Creation of term co-occurrence adjacency matrices

To obtain the term-term co-occurrence Matrix B, we first build the
bi-adjacency matrix of documents-terms per year. In this case, the bi-
adjacency matrix contains 208 entity terms (t) and 67.148 documents
(d). Within this matrix (Matrix A), each cell represents the existence or
absence of a match term-document.

The projection of Matrix A from documents-terms to terms-terms
(Matrix B) provides one weighted adjacency matrix of size 208 by 208
that contains 21.528 unique term-pairs for each year. Each term-pair
cell in the matrix stores the number of times a set of two terms co-
occurred in the same document in a given year. In addition, we store

within the diagonal of Matrix B the number of times each term appears
on a given year. The combination of term-pairs co-occurrences and the
matrix diagonal that stores the volume of individual terms on a given
year, integrates information of both enacted combinatorial possibilities
and individual term usage. For example, Fig. 4 shows Matrix B for one
year with the terms grouped into feedstocks, processing technologies
and outputs. Matrix B provides a consolidated view of the relative usage
of each term and all the connections between terms as well as their
volume.

To test if there were systematic differences in the results between
the two main datasets, scientific publications and patents, a parallel
analysis was run creating an equivalent adjacency matrix for each of
these datasets.

4.4. Measuring year-to-year changes in the matrix of term co-occurrences

The combinatorial space of possibilities for any given year in the
bioenergy R&D example case here holds a total of 21.528 term-term
pairs. One approach to quantify the degree of technological change is to
measure the configurational similarity of each pair of year matrices
(Matrix C). The higher the configurational similarity between one year
and another, the lower the overall technological change between those
years. Hence, year-to-year changes in the method proposed here ac-
count both for the changes in the relative amount of individual terms
between one year and another and for changes in the configuration of
the matrix that describes the combinatorial space actually explored
between one year and another.

The RV coefficient is used to measure the configuration similarity

Fig. 4. Term-term Matrix B. The matrix shows the relative usage of each term and all the connections between terms as well as their volume.
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between any two given matrices B for all year-pairs. These similarity
measures are stored in a weighted years-years adjacency Matrix C. The
chronologically ordered years-years Matrix C for the period 1978–2017
is presented in Fig. 5. The top-left to bottom-right diagonal in the
matrix stores the similarity of a year with itself, hence that value is
always one. Off-diagonal cells range from zero (minimum similarity
value between two given years) and one (complete equivalence).

The chronological results for the year-to-year technological simi-
larity measures are presented in Fig. 6 below. The results can be un-
derstood as a technological change indicator where a low RV coefficient
means higher technological change and high coefficient means lower
technological change.

Despite the different sizes of the patent and publication databases,
parallel analyses of patents and scientific publications in isolation
showed no statistically significant difference to the year-to-year tech-
nological similarity measures observed for the aggregated dataset.

4.5. Interpretation of the indicator of technological change applied to the
bioenergy R&D case

Results shown in the matrix that stores the RV coefficients for all
year pairs (Fig. 5) point to the following four main findings:

1) As intuition would suggest, in general, when the time between two
years increases, their similarity decreases. This is an indication that
our method is able to capture the theoretically expected macro-be-
havior of technological change, which predicts that over time the
accumulation of year-to-year changes (both incremental and ra-
dical) should lead to an increase in the accumulation of technolo-
gical changes over time (Parayil, 1993). For example, an examina-
tion of the RV coefficient curve for the year 2017 in comparison to
all other years, see Fig. 7, shows that with few exceptions, the far-
ther we move from 2017, the lower the RV coefficient becomes.

2) As previously shown in Figs. 6 and 7, year-to-year similarity mea-
sures are relatively low from one year to the next in earlier periods
and are higher in later periods. This indicates that in earlier periods,
i.e. 1978–1990, year-to-year configurational changes in the matrix
that stores the combinatorial possibilities are of larger magnitude
and more frequent. As time passes, i.e. 1990 onwards, year-to-year
changes become smaller, which can be interpreted as a sign that
overall bioenergy R&D is settling into more stable technological
configurations. This is consistent with previous research on tech-
nological breakthroughs by means of niche accumulation and co-
evolution of technologies (Geels, 2005), which suggest that early on
in a technological area we should observe the emergence of several
niches that take time before breaking out to whole systems level and
becoming mainstream.

3) Year-to-year similarity measures are generally much lower and more
rapidly changing in earlier years than in later years. We see this as a
marked difference in RV coefficients in the period pre-1991 (average
RV coefficient of 0,31) and post year 1991 (average RV coefficient of
0,88). One element that influences this behavior is the lower volume
of documents in earlier years, which means that the chances avail-
able to explore all potential combinatorial possibilities are reduced.
However, this is not an artefact of the sampling method or the data-
sources available. Instead, it shows that as the volume of R&D ac-
tivity increases exploration of a wider set of combinatorial possibi-
lities is possible, which in turn translates into more stable year-to-
year similarity measures. A second element that influences this

Fig. 5. Matrix C, Years-years matrix storing RV coefficients that measure the
configuration similarity between any two-year pairs. The lower the value, the
greater the change.

Fig. 6. Chronological results for the year-to-year technological similarity measures.
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behavior is the more experimental and uncertain nature of early
explorations of a new technological field. This means that shifts in
early periods will translate into larger configurational changes when
compared to later periods. One driver for this is the relatively small
volume of overall R&D activity earlier on, which makes each change
a more significant percentage of total R&D activity. In contrast, in
later periods, the larger volume of R&D activity can be distributed
into multiple parallel areas of research.

4) A clustering analysis on the full matrix including all year-pairs was
conducted as an additional step to complement the separate analysis
of the year-to-year similarity measures. The results of this cluster
analysis permit identification of blocks/groups of years with higher

and more stable year-to-year similarity that are interrupted by
changes that break the high similarity found within the block. After
such change, a new block emerges over time. Using a hierarchical
clustering analysis (Johnson, 1967) of Matrix C, shown in Fig. 8, we
can identify the following tree structure describing the year inter-
vals that have high similarity within interval and low similarity
outside of the interval:

Results of the cluster analysis of the Matrix C allow the observation
of two large year intervals; before and after 1990, which is the year that
marks the largest configurational difference between any two large
intervals. In the period until 1990, we observe two sub-intervals

Fig. 7. RV coefficient time series for year 2017.

Fig. 8. Hierarchical clustering analysis of years.
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1978–1985 and 1986–1990. In the period after 1990, we observe five
sub-intervals 1991–2003, 2004–2006, 2007–2010 and 2011–2017. In
addition, using principal component analysis (PCA), we found a similar
structure to the one revealed by the clusters with two large groups of
years, one before and one after 1990.

To evaluate the meaningfulness of the results obtained, and to
provide an interpretation of the changes over time of the indicator
developed here, reference points against which observed patterns can
be validated are used.

A first reference point is provided by an examination of volume-
normalized trends for individual terms and term-pairs, focusing on
trends that show the largest increase or decrease over time. The ob-
jective is to identify patterns within those trends that help to con-
textualize the obtained year-to-year similarity results. As shown in
Fig. 9, term-pairs such as manure-fermentation, ethanol-bark, and
cereal-grains show a consistent downward trend from the nineties,
which becomes a stable flat line from around 1995 onwards. In turn,
term-pairs such as butanol-fermentation, yeast-biofuel, hydrolysis-bio-
mass, and algae-biodiesel all show a sharp increase around the year
2005, and with the exception of butanol-fermentation, which exhibits a
sharp increase much later, all these combinations appear for the first
time between 1990 and 1995.

What these trends show are examples of technological replacement
that the method developed here captures first as two large technolo-
gically distinct groups, one before and one after 1990. Before 1990 the
total list of terms used is short and some of the top terms include waste,
fat, cereal, molasses, and gasification. After 1990, the following high-
lights for each of the identified subperiods are found: 1) 1991–2003 acts
as transition between the terms used in the 1980s (e.g. grain and corn)
which are now in decline and a wide range of new terms such as pyr-
olysis, hydrolysis, and liquefaction; 2) 2004–2006, where the terms first
introduced during the previous stage now experience rapid growth; 3)
2007–2010, where there is rapid growth of terms associated with third-
generation biofuels (for example algae); and 4) 2011–2017, where the
configuration of terms is stable and mostly focused on terms connected
to second and third-generation biofuels.

A second reference point is provided by the time when each gen-
eration of biofuel was formally described for the first time. The left
panel of Fig. 10 shows a plot with the number of documents mentioning
each of the generations between 2006 and 2018, and the right panel
shows the year-to-year similarity matrix with marks when the first
published mention of each generation occurred. The figure shows that
the first formally published description of the notion of a second gen-
eration of biofuels comes significantly after the first quantitative signs

Fig. 9. Example term-pairs trends. The vertical axis (independent for each plot) shows the volume of records. The horizontal axis shows years from 1975 to 2018. The
thickness of the line is a representation of the number of records.

Fig. 10. Left panel, number of records containing references to each of the four biofuel generations. Right panel, year-to-year similarity matrix between 2006 and
2018, with colored vertical lines for when the first mentions to each generation occurred and the previously described clusters A to F as reference points (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.).
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are identified with the proposed method. For example, the second
generation of biofuels, formally described for the first time in 2006, is
associated with terms such as “cellulosic ethanol”, but early signs can
be found in publications from 1990 onwards.

Likewise, the third generation of biofuels, formally described for the
first time in 2008, is often associated with algal biofuels, but early signs
of activity in algal biofuels can be found before 1990. Furthermore, in
2004, two years before the first mention of a third generation of bio-
fuels, there was already a high growth trajectory for algae-related term-
pairs. We can also identify signs of high growth connected to fourth-
generation biofuels, which was formally mentioned for the first time in
2010, at least two years after we observe the high growth in the usage
of terms such as “capture and storage”, “synthetic biology”, and “cya-
nobacteria”.

The third reference point is provided by historical milestones in the
development of modern biofuels, which can be divided in two waves: 1)
milestones related to energy security shocks that triggered govern-
mental initiatives seeking to replace traditional fossil fuels (economic
sustainability) and 2) milestones driven by the negative effects of first-
generation biofuels in food supplies (social sustainability) and by the
desire to introduce carbon-neutral alternatives to fossil fuels (environ-
mental sustainability) (see Gupta et al. (2014) and Pandey et al. (2011)
for an overview of these milestones). The first wave of milestones

created a surge in the development of modern first-generation biofuels.
This surge is reflected in Fig. 11 in the period 1978–1990 with sig-
nificant technological changes as measured by the low year-to-year si-
milarity measures in clusters A and B. In turn, the second wave of
milestones influenced the development of biofuels from non-food crops
(second-generation biofuels) as well as the development of additional
alternatives that minimized environmental and social externalities
(third- and fourth-generation biofuels). This second wave is reflected in
Fig. 11 in the period 1990–2010 where the increased number of com-
binatorial alternatives generated in cluster C (1991–2003) led to a
growth in the year-to-year similarity measures that can be interpreted
as a sign of growing maturity in the configurational possibilities ex-
plored.

5. Discussion and conclusions

From a research implication point of view, the proposed method
permits the quantification of technological change by focusing on a
combinatorial, temporal perspective. Although alternative metrics to
quantify technological change that are “objective and reproducible”
have been developed (e.g. review by Suominen (2013)), such metrics
are often tailored to the needs of specific application domains without
providing general guidelines for multiple domains (e.g.

Fig. 11. Historical milestones in the development of modern biofuels.
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Goldfarb (2005)). Therefore, although previous approaches offer some
advantages in exploring technological change, their drawbacks may
lead to a potentially biased and distorted view of technological dy-
namics and evolution (e.g. Funk and Owen-Smith (2017)). For example,
an increase in R&D funding might result in a higher number of pub-
lications and patents without the expected technological diversification
(Kook et al., 2017). In comparison, the network-based method proposed
in this paper allows for investigation of the combinatorial possibilities
on a macro-level and serves as a platform for complementary analyses
of technological changes. This novel network-based representation and
understanding of technological change also enables exploration of the
temporal evolution of pre-existing configurations and subsequent ad-
ditions or replacements.

The proposed combinatorial view can easily be turned into a multi-
level analysis to study ‘stable component configurations’, ‘dominant
designs’, ‘eras of incremental change’, or ‘disruptive shocks’ at the
macro level. At the same time, this view allows the investigation of
different development stages of component technologies that emerge on
a lower levels of analysis (van den Oord and van Witteloostuijn, 2018).
For example, using our study of the bioenergy R&D field, we provide
evidence of periods of rapid combinatorial change (e.g. 1990–1991,
2003–2004) and periods of incremental combinatorial change (e.g.
2008–2009, 2012–1017). We can also observe the emergence of each of
the four generations of biofuels before the notion of such generations
was first introduced. Further analysis related to the identification of
these various above-mentioned patterns is only one of the potential
avenues for future research.

This method provides a comprehensive encapsulation of technolo-
gical change on the level of the whole domain and a single technology
(Funk and Owen-Smith, 2017; van den Oord, 2010). Moreover, it also
offers a complementary perspective on the quantitative background of
combination and recursiveness; two of the three principles proposed by
Arthur (2009). Thereby, retrospective exploration of development
patterns of mature and emerging technologies is made possible, in ad-
dition to an explanation from a systemic point of view of “how they
came into being” (Arthur, 2009). Aligning with work done by
Hekkert et al. (2007), the sequential representation of technology dy-
namics over time could lay the empirical and theoretical foundations
for mapping the functions of individual innovation systems.

The network changes on the level of the technology domain iden-
tified through the analysis of year-to-year similarities permit in-
troduction of the temporal dimension to the combinatorial view. In
particular, insights obtained through the year-to-year analysis allow
identification of patterns within different time periods and comparative
analyses of given timeframes. As such, historical milestones and tech-
nological trends are indicated. Unlike analytic approaches that seek to
identify specific patterns connected to technological emergence, which
may be manifested in a potentially large number of individual patterns,
the proposed single indicator resulting from the quantification method
proposed here encompasses all identified changes from one period to
the next in the form of the overall configurational structure of a given
technological space. As such, it provides a complementary perspective
to the studies done by Lee and Berente (2013). The method proposed
here is more encompassing and adds more contextual information into
the statistical analysis of a narrower technology domain. It also harvests
insights into explicit links between individual technologies; links that
are revealed through the analysis of network changes. Moreover, the
method supports both research streams of technological change dy-
namics defined by Adegbesan and Ricart (2007), i.e. it includes both
drivers and outcomes of technological change as represented by dif-
ferent reference points in the previous section.

From a methodological implication point of view, the proposed
method offers three main benefits that are related to three different
steps: The creation of a document corpus, the creation of a dictionary of
terms, and the measurement of year-to-year changes in the matrix of
term co-occurrences. Firstly, the method does not rely on data specific

to only one data source and provides wider boundaries and demarca-
tion of the technology domain. As such, it offers an exploration of al-
ternative demarcations as indicated previously in (van den Oord and
van Witteloostuijn, 2018). Aligned with previous studies such as
Arts et al. (2018) and Arts and Veugelers (2018), this study employs a
similar text-mining approach for the quantification of technological
spaces. In that way, it addresses recent calls for extending data corpora
used for this type of studies, going beyond the much-explored corpus of
patents and publications (O'Keeffe and McCarthy, 2012). For example,
scholars such as Abercrombie et al. (2012) and Li (2015) have high-
lighted the importance of drawing upon additional disparate sources of
digital traces such as projects and industrial facilities to make study
results more robust and reliable. In order to utilize and combine a wider
and more representative range of data sources, such as scientific pub-
lications, patents, descriptions of R&D projects as well as biofuel fa-
cilities and projects, the method developed and applied here focused on
the data that was common across all of these sources; the textual de-
scription and date. It is better to understand and characterize the in-
fluence of individual data sources, avenues for further research may
include in-depth studies that compare the obtained results from the
overall dataset with individual data sources, e.g. using technological
similarity measures by Arts et al. (2018).

Secondly, the method includes the creation of a comprehensive
dictionary following the hybrid method introduced in Section 3.2, ag-
gregating multiple structured lists of terms. Furthermore, to account for
the emergence of new terms over time, as new terms appear, the dic-
tionary can be expanded without changing the measures calculated for
previous years. This possibility to expand and update the dictionary
gives more flexibility and adaptability with regard to the level of
granularity of technologies being analyzed, and it allows for a bottom-
up technology discretization strategy that does not require fixed top-
down classifications. In addition, as an extension of the proposed
method, a comprehensive dictionary can be created extracting terms
directly from the whole text corpus instead of using a separate source
for their identification. This extension can be performed using text-
mining approaches such as bag-of-words, and techniques that seek to
extract terms and/or create semantic classifications such as the Latent
Dirichlet Allocation (LDA), Latent Semantic Analysis or Doc2Vec
(Alghamdi and Alfalqi, 2015; Feldman and Sanger, 2007).

Thirdly, while also allowing for a more in-depth exploration of
patterns, the method provides a summary measure of year-to-year
change based on the configurational similarity between the matrices of
one year and another. This measure can be used for the representation
of a combinatorial view that can be applied as an aggregate view of the
trends within the given domain regarding specific technologies. Such a
view is complementary to currently used indicators for tracking year-to-
year changes of specific technology domains, which are often related to
inputs (e.g. R&D investment and R&D personnel statistics) or outputs
(e.g. scientific production in terms of overall numbers of scientific pa-
pers and citations) and not the process itself. In addition, although
technological change is highly context specific (van der Vooren, 2014),
the proposed indicator goes beyond single domain case-based studies
and, as such, permits comparison of configurational changes between
different technological areas.

From a point of view of the implications for industry- and policy
practice, the emphasis in this study is on the temporal perspective of
technological changes. Insights obtained by complementary studies,
e.g. Arts et al. (2018) and Arts and Fleming (2019), focusing on the
influence of motivation of individual entrepreneurs, add opportunities
for additional analysis information and context for qualifying the de-
scriptions of the gathered dataset. More specifically, the analytical ap-
proaches presented in Arts and Fleming (2019) and
Fleming et al. (2007) support the distinction between the influence of
social interaction mechanisms and individual characteristics on in-
ventive output. This may support future exploration of multiple phe-
nomena such as the localization of knowledge spill overs and the
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influence of technological and spatial proximity. In a similar manner,
information obtained from other complementary studies that utilize
explicit links (references) between digital documents (Érdi et al., 2013;
Uzzi et al., 2013) might expand understanding of the technological
domain under analysis.

The present study has three main limitations. The first limitation is
that the proposed indicator does not capture aspects such as impact,
performance or cost within the analyzed technological domain. For that
reason, it is most appropriate for early-stage R&D activities to identify
and define overall technological configurations. The second limitation
is associated with the interpretation of term co-occurrences that are
stored in the adjacency matrices. They are valid only at the aggregate
document corpus level, i.e. the findings should not be extended to in-
dividual documents. Finally, the third limitation is that the volume of
document records affects the possibility of finding a given term within
the analyzed corpus. Therefore, this type of analysis is more suitable for
large document corpora composed of several thousand records.

In conclusion, the novel method for quantifying technological
change proposed here and its application using a large-scale dataset of
worldwide bioenergy R&D is intended for technological change scho-
lars, large-scale systems design researchers, technology forecasters in
industry, and R&D policy makers. The proposed indicator for techno-
logical change as a combinatorial process opens the following avenues
for further impact pathways: 1) comparison of technological change
curves between different countries and industries based on combina-
torial technological change principles, 2) development of predictive
models to anticipate the next period of radical or disruptive technolo-
gical changes, 3) comparative studies of different data sources (e.g.
patents and publications) better to study the similarities and differences
in their evolutionary patterns, and finally 4) provision of analytical
support to build recommendation engines that use the network struc-
ture of the combinatorial process to identify and predict technological
combinations that have not happened yet but are statistically likely to
occur.
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