Taming the black box

How to monitor Machine Learning models in production

MLOps Jan 2023 - DTU Duarte O.Carmo duarteocarmo.com - @duarteocarmo

Who even are you?

- /du-art/
- DTU graduated in 2018 (Eng. Management LOL)
- ML/Software Engineer Contractor
- From Lisbon, based in Copenhagen
- *Past:* Strategy, Product Management, New Ventures, Management Consulting
- I write code and solve problems end-to-end
- I like running a lot

This is a lecture to show you how to deal with things if when they break

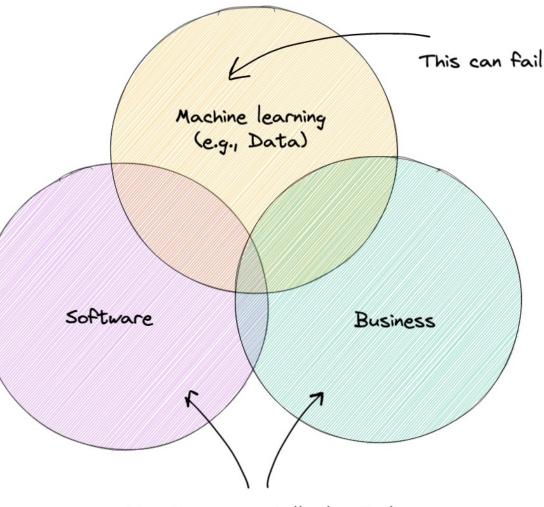
- Talk about failures
- Things to keep in mind
- How to see/prevent failures

- This is a new field
- None of this is set in stone
- Life is made of tradeoffs

1 | What can fail?

ML applications will fail in a myriad of ways

(but we can group them in 3)



But these can/will also fail

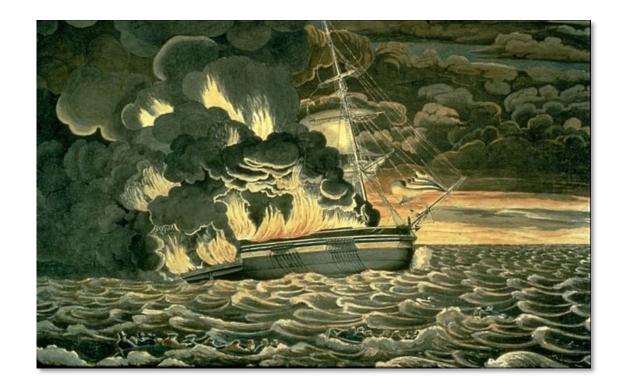
1.1 | Software failures 1.2 | ML failures 1.3 | Business failures

Software is never done

(only abandoned)

All of the reasons your non-ML application can already fail

- Dependencies
- Deployments
- Hardware
- Downtime/crashing



1.1 | Software failures 1.2 | ML failures 1.3 | Business failures

Failure 1 | Can you handle an edge case?

- Text classifier receives an empty string
- You don't receive an int
- Self driving car gets stopped by Police
- Driving in US != Driving in Malaysia

Failure 2 | Degenerate feedback loops – when predictions influence feedback

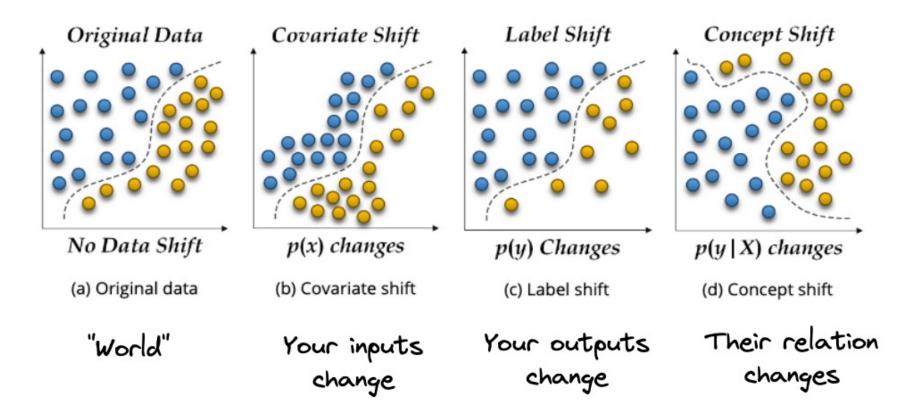
- Recommendation systems
- YouTube/Spotify/Netflix algorithm
- Filter bubble
- TikTok and randomization

SIPRESS

"My desire to be well-informed is currently at odds with my desire to remain sane."

training != production

x : your inputs y: your outputs



DTU

Data Drift

The model performs worse on unknown data regions

Target Drift

The world has changed, and you need to wake up

DTU

Data Drift

The model performs worse on unknown data regions

Target Drift

The world has changed, and you need to wake up

How to address

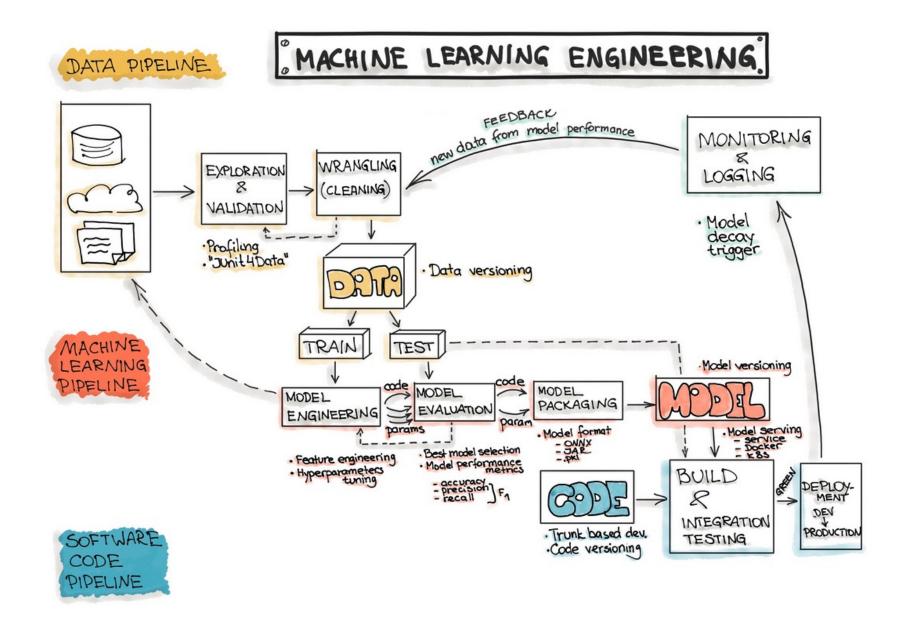
- **1**. Train the model on a massive dataset
- 2. Domain adaptation (experimental google it)
- **3**. Retrain your model from scratch, or from the last checkpoint

1.1 | Software failures 1.2 | ML failures 1.3 | Business failures

"The programmer"

How many predictions are we making? How is the **KPI** evolving? Do you mind also predicting X? Ah really? I thought Y was happening... How much value are you delivering? Why did you predict Y on X?

2 | Before you make a model



Credits: ml-ops.org

duarteocarmo.com - @duarteocarmo

There are 3 mains ways of knowing how your model is performing in production

Hand labels

Natural labels

Programmatic labels

- Annotate labels by hand
- It can get expensive
- Models require less (e.g., fine tunning)
- You know your performance in production
- Trip prediction, forecasting, timeseries
- Ensure system to leverage them
- No natural labels
- Recommendation not clicked is a bad label
- Get creative (thumbs up, copy paste, user feedback)

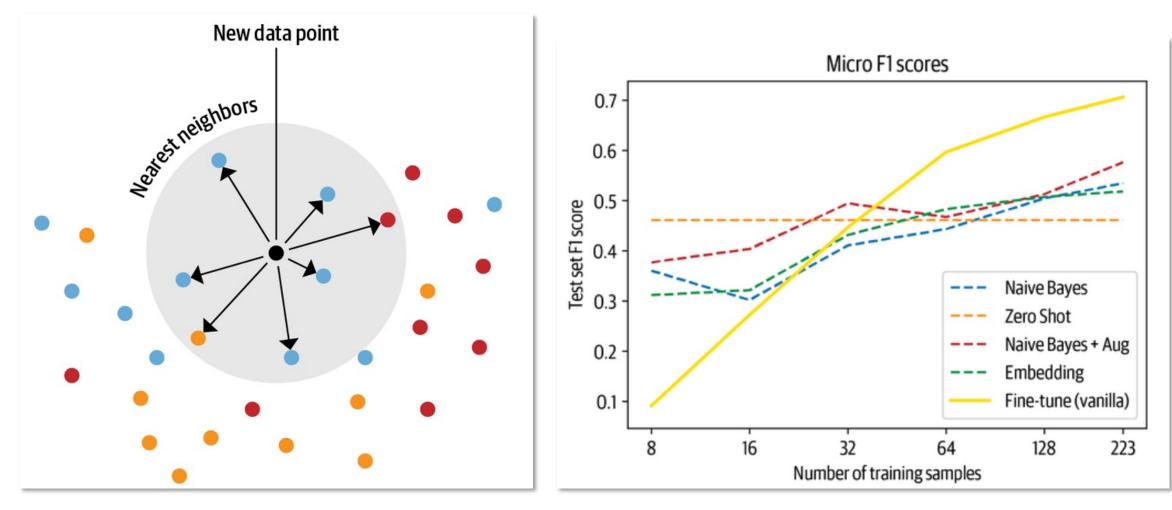
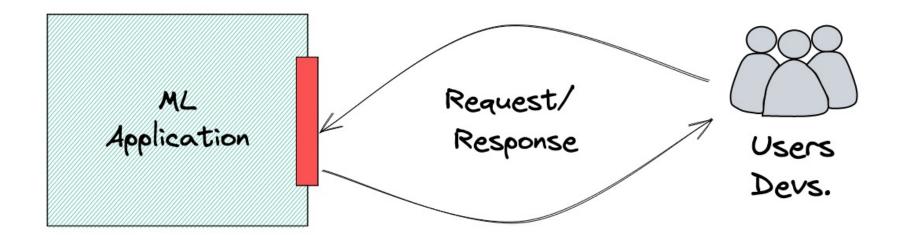


Figure 1: Making a lot with a Little Credits: Lewis Tunstall, NLP with Transformers O'Reilly Figure 2: Nearest neighbour lookup Credits: Lewis Tunstall, NLP with Transformers O'Reilly

3 | Let's get practical



3.1 | Software Monitoring 3.2 | ML Monitoring 3.3 | Business reporting

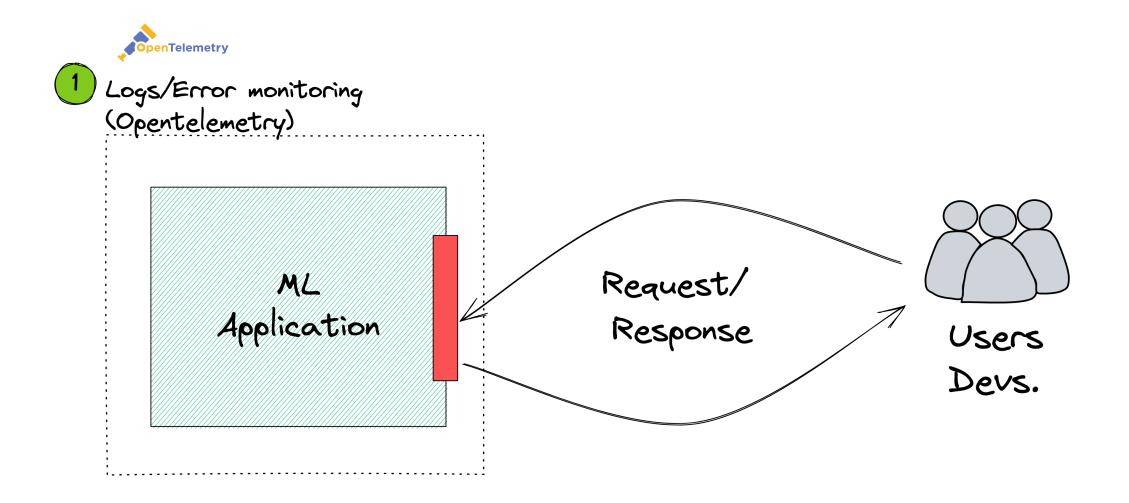
What the hell is OpenTelemetry?

from opentelemetry import trace

current_span = trace.get_current_span()

```
current_span.set_attribute("operation.value", 1)
current_span.set_attribute("operation.name", "Saying hello!")
current_span.set_attribute("operation.other-stuff", [1, 2, 3])
```


import fastapi from opentelemetry import trace Import opentelemetry and from opentelemetry.exporter.otlp.proto.http.trace exporter import (OTLPSpanExporter, FastAPIInstrumentor from opentelemetry.instrumentation.fastapi import FastAPIInstrumentor from opentelemetry.sdk.trace import TracerProvider from opentelemetry.sdk.trace.export import BatchSpanProcessor from .models import Result, Item Initialize instrumentation provider = TracerProvider() processor = BatchSpanProcessor(OTLPSpanExporter()) provider.add span processor(processor) trace.set tracer provider(provider) tracer = trace.get tracer(name) Initialize FastAPI app = fastapi.FastAPI(title="demo") FastAPIInstrumentor.instrument app(app) @app.post("/predict/", reponse model=Result) Save prediction to opentelemetry def predict(features: Item): current span = trace.get current span() input hash = hash(features) current span.set attribute("app.demo.input hash", input hash) prediction = get prediction for(features) current span.set attribute("app.demo.prediction", prediction) return prediction Don't forget feedback @app.post("/feedback") def receive feedback(request): current span = trace.get current span() save to db(request.feedback) current span.set attribute("app.demo.feedback", request.feedback) return {"received": "ok"}



3.1 | Software Monitoring 3.2 | ML Monitoring 3.3 | Business reporting

1.Save your predictions to a database

```
# monitoring.py
# ....
def save_to_database(input: Item, result: Result) -> None:
    """
    Saves input/output dicts to bigquery
    """
    client = BigQuery.client()
    table = "your_cool_bq_table"
    current_time = datetime.datetime.now()
    rows_to_insert = [(current_time, input.json(), result.json())]
    errors = client.insert_rows(table,
```

rows_to_insert)

if errors:
 logging.info(f"Error: {str(errors)}")
 return

logging.info("Saved prediction")

2.Don't block responses with saving

```
# app.py
# ...
from fastapi import FastAPI, BackgroundTasks
from .monitoring import save_to_database
# ...
# create an endpoint that receives POST requests
@app.post("/predict/",
          reponse_model=Result,
          background_tasks: BackgroundTasks)
def predict(features: Item):
   # some processing
    prediction = get_prediction_for(features)
    background_tasks.add_task(save_to_bq, input=features, result=prediction)
    return prediction
```

3.Load reference and predicted data # ... rest of the monitoring.py

DATA_WINDOW_SIZE = 3000 # how many predictions to load

```
# loads our training/reference dataset
def load_train_data() -> pandas.DataFrame:
    train_file = "static/train_data.csv"
    train_df = pandas.read_csv(train_file)
    return train_df
```

loads our latest predictions
def load_last_predictions() -> pandas.DataFrame:
 query = f"""
 SELECT created_at, input, output
 FROM `my_cool_bgq_table`
 ORDER BY created_at DESC
 LIMIT {DATA_WINDOW_SIZE};
 """
 prediction_data = pandas.read_gbq(query=query)
 return prediction data

4.Generate your dashboard

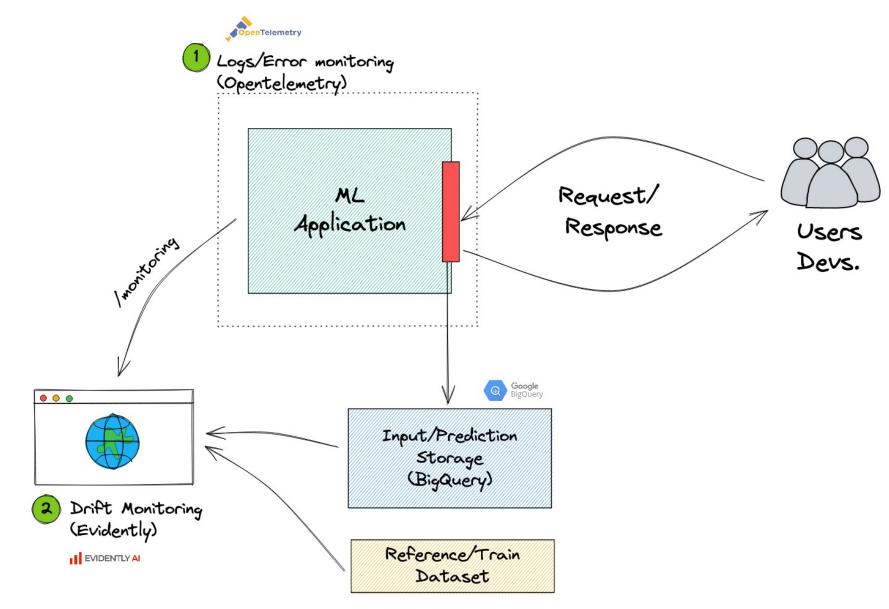
```
# ... rest of the monitoring.py
```

```
# this function generates a dashboard from our reference and prediction data
# which is then saved to a `drift.html` file
def generate_dashboard() -> str:
   dasboard_name = "static/drift.html"
    data_drift_dashboard = Dashboard(
       tabs=[
            DataDriftTab(verbose_level=0),
    reference data = load reference data()
    current data = load last predictions()
    data_drift_dashboard.calculate(
        reference data=reference data,
        current_data=current_data,
        column_mapping=None,
    data_drift_dashboard.save(dasboard_name)
    logger.info(f"Dashboard saved to {dasboard_name}")
    return dasboard name
```

5.Serve your dashboard

from .monitoring import generate_dashboard
... rest of the main.py

@app.get("/monitoring", tags=["Other"])
def monitoring():
 dashboard_location = generate_dashboard()
 return FileResponse(dashboard_location)

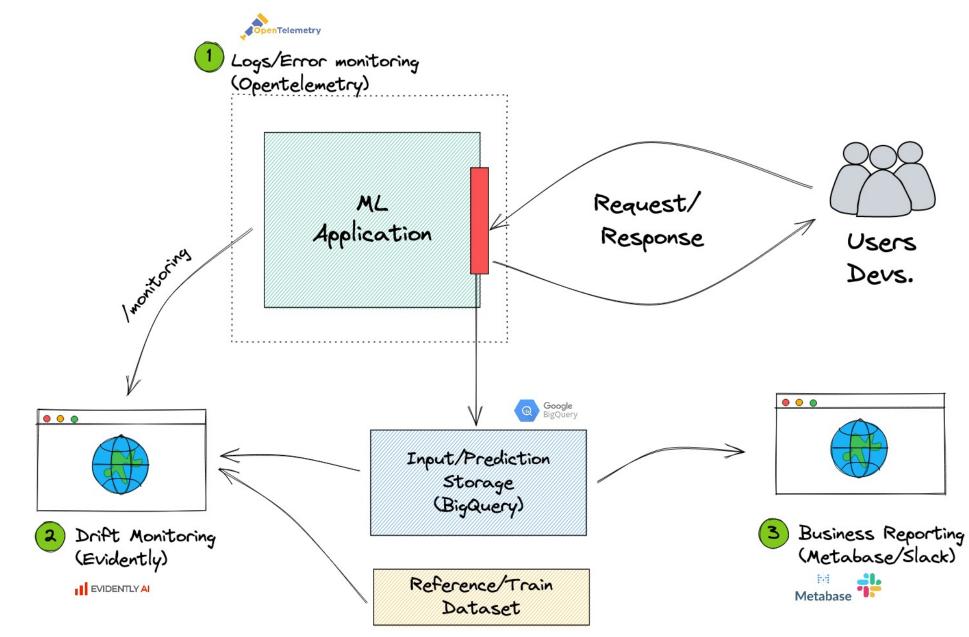


3.1 | Software Monitoring 3.2 | ML Monitoring 3.3 | Business reporting

Every company has a BI tool

Metabase Supercell PowerBI Excel Sheets Slack

...



duarteocarmo.com - @duarteocarmo

DTU

What's the point in the end?

- 1. Things break know how
- 2. You're not working in a basement
- 3. Get feedback, and save your predictions
- 4. Don't focus on the tool, focus on the task

Thank you, questions?

Feedback: tinyurl.com/duarte-lecture

